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ABSTRACT
Sets of systems of ordinary functional-differential equations with
Volterra type functionals under sets of initial values are considered. Upper
and lower bounds are constructed for the sets of all solutions. Classes
of such problems are given where these bounds are optimal. The main tool |
is a Lemma of Max Mﬁlle; on inequalities. Also ideas from interval

mathematics are used.
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SIGNIFICANCE AND EXPLANATION
If differential equations
u'(t) = f£(t,u(t)), u(0) =a

appear in Applied Mathematics there is normally not just one right hand side

i f(t,u). Instead of this a whole set {f} of right hand sides must be

considered. This is due to many facts such as: data errors, data intervals

obtained from measurements, approximation of f by a more suitable function,

poor knowledge of the laws involved etc. The same is true for the initial

*
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"value" o which is usually a set {a}. Hence the above initial value
problem has to be replaced by the inclusion problem
u'(t) ¢ {£(t,u(t))}, u(o) e {a} .

It is normally completely impossible to solve all the real problems
which are combined in this set of problems. The goal of the following paper
is therefore to find at least lower and upper bounds to the set of all such
solutions.

This can always be done. Since these bounds are sometimes very

pessimistic, classes of such problems are given where the bounds obtained
are optimal.

The main ideas of this paper are also valid in the more general case
where f does depend as a functional upon the unknown solution wu. This
is written in the form f(t,u(t),u(-)). Therefore the theory of this paper
also includes integro-differential equations and difference~differential
equations.

Sets of such problems do occur for example in Economics and in

Biology.
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BOUNDS FOR THE SET OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS

*
Karl L. Nickel

1. Introduction
In the following paper systems of functional-differential equations
1) u'(t) = f(t,ult),u()) for 0 <t T
are considered under the initial conditions
(2) u(0) = a .

Herein u = (u_,u
L2

,...,un), f = (fl'fz""'fn) and a = (a l,az,...,un) are n-vectors.
As usual u or u(t) means the value of the function u at the point t; moreover
u'(t) = du/dt. Opposite to this the notation u(:) means that u is regarded as an
element of the class of admissible functions. Hence f£(-,-,u(*)) is a functional on u;
in what follows only special "Volterra" functionals will be regarded.
If f is continuous then the system (1), (2) is equivalent to the system of func-
tional-integral equations
t .
(3) u(t) =a + [ f(s,u(s),u(-))ds for 0 <t <T.
! =
It is the subject of the following paper to find bounding functions v(t), w(t) such
that for every solution a(t) of (1), (2) ox (3)

(4) v(t) < G(t) S w(t) for 0<t<T.

A

Hence the classical theory of maximal and minimal solutions for differential eguations
appears as a special case of these results. .

If a solution u of (1), (2) is uniquely determined then it is trivial that (4) is
satisfied for w := v := u. It is therefore interesting to switch to a more general
problem: Let {a} be a set of initial values and let {f} be a set of right hand sides

to (1). Then the more general initial value problem

*
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(5) u'(t) € {f(t,u(t),u(-))} for 0<tsT,

(6) u(0) ¢ {a}

is considered. Let {u} = {G(t)} be the set of all solutions of (5), (6). Again two
functions v(t), w(t) are looked for such that (4) is true for any solution ue {a}.
If one writes [v,w] for the function interval from the two bound functions v and w
then this can be written as

(7 {u} e [v,w) .

It is in general quite simple to find rough bounds v,w. In what follows special
emphasis is therefore given to the look for "optimal" bounds. Here "optimality" means
the.following: let there exist the infimum and the supremum of the set {u} such that
(8) v = inf{d}, w = sup{u} .

In that case one can call ([v,w] the "interval hull* of {G). It is the goal of this
paper to find classes of sets {f} and {a} such that (7) and (8) are true.

In ordef to get such results a lemma of Max Miller (1927) on differential inequalities
is essential. This lemma has been published exactly 50 years ago. For decades however,
it remained widely unnoticed. In what follows tbis lemma will be extended to the case
of functional-differential inequalities. This will be done by extending an old paper
of the author (Nickel (1961)).

It should finally be remarked that the problem of this paper and some of the formula-

tions have been strongly influenced by the ideas of interval mathematics.




2. Notations and assumptions

Let ne N, 0<Te¢ R, I := [0,T), I  := (0O,T), a € R". The n-vectors a, u(t),

0

f(t,u,u(:)) are written as a = (ul,a ,...,an), u = (ul,u ,...,un), f = (fl,fz.---,fn)-

2 2

Together with the k-th component u of the vector u also the n-l-vector

k

u = (u ,u, ,...,0

k 1'%2 k=1"Yk417 " #9,)  is used.

Let the class Z of the admissible functions be defined as the set of all function
vectors u : I = 1{2 continuous on I such that the derivative u' = du/dt exists in 1

The notation u(*) means that u is an element of the class 2. Opposite to this
u, u' or u(t), u'(t) mean the values of these functions at the point t.

Inequalities v(t) b w(t) or v < w are always meant componentwise as vk(t) < wk(t)
for k = 1(1)n. 1Inequalities of the kind v(°) ;-w(') are meant both componentwise and
pointwise for all points in the definition set.

For v <w the interval [v,w) is defined as the set [v,w] = [v(t),w(t)] := {z € r"
vit) <z swit)}. similarly [v(-),w()) := {z € Z|v() < z(1) < w(-)]}.

Let the dependence of fi(t,u,u(-)) of any component uk(-) for k = 1(1)n be
that of a "Volterra" functional. Here a functional g(t,z(+)) is called "Volterra"
if it represents a mapping in R such that the value of g at the point t depends
only on the value =z(s) for O $s st (g depends only upon “the past"™ of the function
z()).

Examples of Volterra functionals are

€
g(t,z(-)) := f K(t,s,z(s))ds ,
0
(9) glt,z(*)) := z(T-t) with 0<t <1,
z(t - s) for 0 $s st
(10) g(t,z(-)) :=
alt - s) for 0<t<s

with some given function a(t) for
s <t<O0.
=
These examples show that the theory given in this paper can be applied to: differential

equations, (Volterra) integro-differential equations, difference-differential equations

-3-
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with retarded argument and naturally also to combinations of these equations.

In order to simplify the results the following notation will be used for the

components f

X of f(t,u,u(-)): the second argument u € r" of f is broken up in

the component uk with the same index k as fk and in the rest vector u:

fk = fk(t.uk.kum("))

Furthermore it is suitable to have a special notation for the set of all functions f

k

-

k

if the arguments lie in certain intervals. This will be denoted by

{f) (o [V w1 V() W)} e= {E(e a0 nuC) | ue v, wlu() e [vis) W]} .

k'k

From section 7 to the rest of this paper only functions

f will be regarded which are

partially monotone. The corresponding definitions will be given in section 7.




S . - e e

3. Existence

The following theorem is the extension of the well known Peano existence theorem
for systems of differential equations:

Theorem:

Let f be defined and continuous on I x R" x Z. Then (1), (2) and (3) are

equivalent. If f is bounded there exists (at least) one solution 4 € 2 of (1), (2).

If f is not bounded then there exists a solution of (1), (2) at least in a largest

interval 0 < t < Tl < T
Proof: The equivalence is trivial. For the existence the fixed point theorem of Schauder
is applied to equation (3). The main ideas are exactly the same as in the case of

differential equations. They are described in the book of Walter (1970), p. 23-25.




4. The Lemma of Max Muller

Lemma :

Let the functions v,w € Z with v < w satisfy the following inequalities

(11) v(0) < a < w(0) ,
(12) V;( < {fk(t:,vk. [kvlkwlrlv(')'w(')]] ]
(13) W)" > {fk(tpwkl lkvlkw]llv(')lw(')])

for te€ Io and k = 1(1)n .

Then any solution ue 2z of (1), (2) is bounded by

(14) v(t) < u(t) <w(t) for teI.
Corollaries:

1) If ue€ Z is a solution of the inequalities u(0) < a, u' < f(t,u,u(+)) in

10 then
u(t) < w(t) for t e I .

2) Similar

u(t) > v(t) for teI

for any solution u € Z of the inequalities u(0) > a, u' > f£(t,u,u(-)) in Io.

3y If all fk are strictly monotone (increasing or decreasing) with respect to

(at least) one of the components of u(+), it then suffices to have the ; - and

<-signs in (12) and (13) instead of the >- and <-signs.
Remarks:

1) This Lemma has been formulated and proven by Max Muller (1927) as Theorem 5
on the pages 13 to 15 for the special case where f does not depend upon u(:). See
W. Walter (1970), p. 93-94.

2) The original notation of M. Muller was véry inconvenient. It has here been
replaced by the interval notation.

3) Kindly note that there are no assumptions to be made with respect to the function
f, such as continuity, monotonicity etc.

Proof: The original proof of M. Muller carries right over to this case.




5. Example

In the following example n = 2. The functional (9) is used for 1 = 1/2 together
with the other functional

&

f (u2(s) + u2(s))ds .
1 2
0
Let
I t2 2
fl(t.u'u(-)) = 2u1 + u2/(1 + t )-+(ul(t/2) + uz(t/Z))/2 ’
14t 2
£,(t,u,u()) =1 - sin(mu/2) + 2u,(1 - 2u)) + o £ (u)(s) + uj(s))as ,

0 < 01' uz <N

Define v_ = v_ := 0,.w =w, :=1 for t

1 2 0. Then one verifies easily for t > 0

nv

fl(trvlllV21w2]:[Vl(')rwl(')]l[vz(')lwz(')]) 0+ [0,1]/(1 + tz) + [0,1) ; o,

=3 & [0,00/11 « ¢23 + 50,1 <0 ,

fl(t'wlllvzlwzlllvl(’)rwl(')]l[vz(')lwz(')])

fz(t,v ) = [0,k) + 0 + [0,1) > 0,

PLEEE

n

A
o
.

fz(tlw ) [011] SH2R T [011] =

PYARE
Since fl and f2 are strictly monotone increasing with respect to both components
ul(-) and u2(-) the third corollary to the lemma can be used. This gives the a priori

estimate O < Gl(c), Gz(t) <1 for t >0 for any solution u.




6. Uniqueness and error bounds

For ordinary differential equations all uniqueness theorems can be derived from
the Lemma of M. Muller. In his original paper he did use the lemma exactly for that
purpose. Similarly probably all known a posteriori bounds can be proven with its help.
Therefore a very large number of such theorems can immediately be proven also for the
case of functional-differential equations. It is possible to translate all the results
from the book of W. Walter to these extended systems of equations. Some first results
have already been given in the old paper by K. Nickel (1961). It is however, not the

purpose of this paper to publish such theorems.




7. Monotonicity conditions

Definition (unconditionally partially isotone/antitone/monotone):

Let g(xl.xz....,xm) be a mapping g : D+ R with DC R . Again the notation

g(xl.---.xm) = g(xk.kx) is used. The function g is called unconditionally partially

: isotone or antitone on D with respect to the variable X if

. 9y Xx) 2 90x . x) for y > X, or y <x

and for all (xk,kx), (yk,kx) € D. A function which is either unconditionally partially

isotone or unc. part. antitone is called unconditionally partially monotone.

Kindly note that the function g(xl,xz) 1= X is unconditionally partially

on D := jo,w) X [0,2), but not on D := Rz.

17%2
monotone with respect to x1 and X,

Definition (monotonicity class M):

Let the class M consist on all functions f(t,u,v(-)) for which the foilowing

is true: Each function fk(t,u ,ku,v(-)) is unconditionally partially monotone on

k
n-1
0
with respect to uy -
If f € M then it is convenient to write

fk(t,u u,u(*)) = fk(t,u ' uf,kut,u(')$.u(-)+) .

k'k k'k

This clearly means that the vectors kY and u(+) are divided in the two sets of

components for which fk is isotone (4) and antitone (¥).
Let f € M. Then in the Lemma of M. Muller the (rather inconvenient) inequalities
of sets can be replaced by real inequalities (which are much simpler to handle).. In

this case the Lemma reduces to the

Special case of the Lemma:

Let f € M. Assume that (11) is true for functions v,w € 2 with v <w and

that furthermore

vi, Wi, v()4,w(-)¥)

.
% ° fx‘t"’x’x k '
. - -
“x > fk(t.wk.kwf,kvhﬂ YA, v()4)

for te 10 and k = 1(1)n .

I xR x R X Z with respect to any component of K and v(-), but not necessarily




‘Then any solution u e 2 of (1), (2) is bounded by (14); furthermore the corollaries

1) to 2) hold.

The proof comes immediately from the Lemma together with the definition of the

class M.

-10-




8. Construction of bounds

In what follows the special case of the Lemma will be used to construct bound func-
tions v and w. The above problem (1), (2), (4) will be replaced by a more general

' since no additional difficulties are generated by that extension:

The initial data o in the initial conditions (2) are to be replaced by a set f{a}.
E For simplicity assume {a} C [a,a] with two vectors a,a € R' and a < a such that
(15) a,a € {a} C [a,a]) .
Hence the initial conditions (1) are to be replaced by (6). Let {u} be the set of

.

all solutions of (1) under the set of all initial conditions (6). Wanted are bounds

v,w such that (7) is true.

Assume that f is continuous and bounded on I X R" x Z. The following sequence

of problems for v € N 1is considered:

h 1
Vk = fk(t'vk,kv+'kw+'k"( )f'kw( )¥) v L
(16) 1
wk = fk(t,wk,kw$,kv¢,kw(-)f,kv(-)l) + ;
for te€ Io and k = 1(1)n ,
a”n v(0) =a -1/v, w(0) =a+ 1/v.

By the existence theorem of section 3 there exists for every v € N at least one

solution v,w € Z of the coupled system (16), -(17). An arbitrary solution is picked
v v

up and called (v ,w ). Then

v+ - \Y
vV < v 1 < qa < wv+l < w

for all Ve N and for any solution u € Z of (1), (2). This follows by the special
case of the Lemma and by the definition of the right hand sides in (16) and in (17).

v v
ice the sequences {v } and {w } are monotone and bounded. As sequences of

measurcble functions they have measurable limit functions v(t) := sup(vv(t)} and
;(t) g inf{wv(t)}. Furthermore

w .

(18) vea

A

One can show as usual that these sequences are uniformly convergent on ‘I and that

!,;'e Z (see W. Walter (1970), p. 68). Furthermore the pair (!,;) satisfies the

-11-
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following functional-differential system in Io consisting of

whv ()W) ),

2n equations

!k = fk(t,v P

—*'k— 'k
(19) 2

wk = fk(t,wk,kwf,ky_hw(-)f,!_('H)
under the 2n initial conditions

(20) v() =a, w() =a .

If ue 2 is a solution of (1), (2), then the pair (a,u) is also a solution of (19),
(2). 1In general the reverse is however, not true, i.e. the functions v, w are in
general no solutions of (1), .(6) . Hence they are not minimal or maximal solutions to

(1), (6) in the usual sense (see however, section 11). In what follows the interval

(!,;] will be called maximal interval solution of (1), (6).

The reason for this notation comes from the following: Define the interval operator
Flv,w] = (Fl,Fz,...,Pn) by its k-th component as follows:

t

Flviwl(t) = (o, +(/) £ (Svy e vl wi,v()t,w()d)ds ,

t

Jk + g £ (0w 0wt viw()4,v(0)4)ds) .

Any solution u of (1), (6) satisfies
u € Fla,u) .

Moreover the interval [!,;] is a fixed interval of the operator F by (19) and (20).
By construction [y_,;] is the smallest fixed interval of F for which (18) is true.
If a = @ = a and if maximal and minimal solutions of (1), (2) exist then they are
equal to v and w.

This idea consists therefore in replacing the usual ordering relation = (component-
wise with respect to k and pointwise with respect to t) by the inclusion C as a

new ordering relation (also componentwise and pointwise).

-12-
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9. Bounds for the solutions of sets of functional-differential equations

The equations (1), (2) are now being replaced by inclusions (5), (6).

Theorem:

Let (15) be satisfied by the set of initial values {a}. Assume that there exist

two right hand sides £, £ € {f} with f <T such that for all solutions ue Z of (5), (6)

£(t,u,u()), f(t,u,u(-)) € {£(t,u,u(-))} € (£(t,u,u(-)),E(t,u,u(-))] in I

Assume furthermore that the two functions g,f.e Z and are continuous and bounded on

n : ; SR
I x R x Z. Construct the maximal interval solutions to a, £ and a, f to the S

problem (1), (2) and call them [v,w] and [;,;]. Then v w and for the set {G}

nA

of all solutions u € 2 of (5), (6) the inclusion

(21) {u} € tv,w)
is true.
Remarks: 1) There is nothing assumed for one of the right hand sides f € {f} if
£+ g,;; only the existence of that function. If f for example is not continuous, no
solution u of (1), (2) may exist. Kindly note that the theorem deals only with
existing solutions.

2) 1In order to find the two bounds !,; for all (in general « many) solutions of
{(5), (6) one has to determine the maximal interval solutions of two coupled systems with
2n equations each. The functions v and w are a "side effect" of this procedure,
they are not needed for the inclusion (21). They do have however, a meaning as "inner"
bounds to {u} in the sense of interval mathematics.

Proof: Let u be a solution of (5), (6). Then u' = f(t,u,u(*)) < £(t,0,u(")) in 10.

Then a < w in 1 by the corollary 1 of the lemma and by the construction of (;.;).

The inequality a > v is shown similarly which finishés the proof;

i o

e <o
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10. 1Iwo examples

l) Let n=1, a =0,
(22) f(t,u,u(-)) := 2(/Ju(t)| + ulr-t))
and

(£} := {glo st <1} .

The functional used is wu(t-t) by (9). I do not know if the problem (1), (2) with f
by (22) can explicitly be solved for T # 0,1.

Since f 1is isotone in u(°) the two inequalities (12) and (13) of the Lemma L
are decoupled. By putting v(t) := -¢, 0 < € <1 one gets v(0) = -e <0 =a and

0=v'(t) <2¢(/vit)]| + vir-)) =2/ (1 - Ve) .

Hence by the Lemma ﬁ(t) > -g¢ for any solution we Z of (1), (2). For € - 0 one

gets alt)

v

0 and therefore by (22) there is also u'(t) > O for any solution u.
Hence 0 < a(t-t) S G(t) for any solution, therefore one can define
£(t,u,u(-)) =0, £(t,u,u(-)) = 2(u(e)| + u(t))

The maximal interval solution is found easily as v := 0, w := (exp t - 1)2 hence

(23) a(t) € [0, (exp t - lle for t >0,
for all solutions u of (1), (2) with (22).

If one now changes the functional (9) in (22) to (10) one gets the function

2(/lu(t)| + u(t - s)) for 0<s <t

(24) f(t,u,u(*)) := setds ;]

2/|u(t)| for O

where 0 < s < », With this right hand side (24) one gets a whole set of difference-

.

na

t<s,

differential equations with retarded argument. The same ideas as above give exactly the
same bound functions v and w. Hence also in this case (23) is true.

The same can be said for the third different right hand side
P e T D, 1/
(25) £t,u,u(-)) = 2¢/uct)| + ¢f Juts)|Pas) /P
0

with 1 P The functional in this case is the Volterra p-norm with the sup norm

for p ==,

-14-
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Since in all three cases the bounds Ve w are solutions itself to u' = f, u' = f
one gets in addition the optimality condition

(26) vowe {u) € (v,w) .

This result is highly surprising. The three problems with the different right hand

sides (23), (24) and (25) most certainly have completely different solutions and therefore

also different solution sets. In spite of this fact all three sets have the same bounds

and furthermore these bounds are optimal.

This example shows also, that it is very often simpler to look for bounds !,;- .

such that (26) is true than to try to solve the equations.

2) Let n = 2, the given system is

' = =
ul “21 “1(0) 01 '
[ - - "
uy = -u,, uz(O) °,
The uniquely determined solution is
ul(t) = oy cos t + a, sin t, uz(t) ol sin t + a, cos (e
Let ul € [0,1), az € [0,1). Then by the rules of interval arithmetic (see R. E. Hoore
(1966))

Gl(t) € [0,1) cos t + [0,1) sin t ,
uz(t) € [-1,0) sin t + [0,1) cos t .

The set of solutions is hatched in Figure 1. In the picture also the "main" sclution

for u1 = 02 = 1/2 is shown. The extiended system (19) reads here as

i

Py vlFO) 0

va = - v2(0) =0,

' o= =

v3 w2, v3(0) o
' - =

v4 = vl, v4(0) L =

The solution to this system is unique, hence the maximal interval solution

.

~15-
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Zgl(c) = -et +sint +cos t ,
t ~
2!2(t) =-e 4+ cost-sint,
zzi(t) = et + sint + cos t ,
o= t
2w2(t) = e +cost-sint .
. Hence the functions v, w "back away" from the "main" solution (see Figure 1) as fast

as et/z to below and to above.
For t = 21 one sees {GI(Zn)],{ﬁztzn)} C [0,1]. But ;i(Zﬂ) -y (2m = o =354 L
for k =1,2. The real set of solutions (G} is therefore surpassed at t = 21 by

[!,;] by a factor of more than 500 and this grows rapidly worse for larger values of t!!!

This example was first discussed by R. E. Moore (1966) by using geometrical reasoning.




11. Optimal bounds for the set of solutions: maximal and minimal solutions

By section 9 one sees that it is enough to restrict the survey to the solution of
two real functional differential equations if one wishes to bound the solutions of sets
of such equations. Hence the following optimality considerations are given only for
systems of the type (1). Since it is no aggravation the initial inclusion (6) has however,
been used instead of the initial condition (2). It is always assumed that (15) is true.

As is shown by the second example of section 10 the maximal interval solution (!.;]
gives in general not optimal bounds to the set of solutions {G}. In this and in the
next section classes of problems will be given such that there is optimality either in
the sense of (26) or at least of (8).

Let f € M. Assume furthermore that all functions fk(t,u u,v(*)) are uncondi-

k'k

tionally partially isotone with respect to any of the components of _u and v(-).

k
This is called "quasimonotone increasing" by W. Walter (1970) in the case of differential
equations. With this condition the equations for v and w in (16) and (19) are
decoupled from each other. Therefore the functions v .and w are even solutions of
(1). In the case of differential equations these are the well known minimal and maximal
solutions (see W. Walter 1970, p. 95). Hence (26) is true which implies (8), therefore
the bounds v and w are optimal.

o

2 o]
A simple example for this case was given in section (0.1). Another example for

n = 2 is the system of differential equations

ut = 2/|u |, u (0) =0,
(27 1 1 1
uj = +2/|u1|. u,(0) =0 .
3 . p i - e S
One finds easily zl(t) = vz(t) =0, wl(t) = wz(t) A -

-18-




12. Further cases with optimal bounds

If one changes in the system (26) the sign in the second equation one gets ~

uf - 2/iu1|, u (0 =0,
u3 = -2/|u1|, u,(0) =0 .

Now the right hand sides are not anymore "quasimonotone increasing". The set of all
solutions can be described quite easily, one finds (ﬁl(t)) c to,t%1, {Gz(t)} c (0,t%).
The maximal interval solution of (19), (20) produces the bounds

2

,; t= 0 .

- "I - 2 w =
vo(t) =0, v () = ~t", W (t) = t%, W,

2

They are again optimal bounds. Opposite to the results of section 11 the functions v
and w are not anymore solutions of (1) (but certainly of (19)).

By inspection one sees however, that the "crossed" couples Qil';é) and (;i.lz)
each are a solution to (1). This is responsible for the optimality. Because if v
and w are at least componentwise solutions of (1) then there exist no smaller intervals
[v,w] € [!,;] such that (4) is valid. Hence in this case (8) is true which means
optimality.

The classes of problems (1), (6) considered in this section are extensions of this
example.
Definition (monotonicity matrices): Let f£ € M.

Define for i = 1(1)n

0 if fi does not depend upon “k v

aik 1= +1 if fi depends isotone upon uk v
-1 it fi depends antitone upon uy

for i#k =1(1)n ,
0 if f. does not depend upon uk(') '
bik 1= +1 if fi depends isotone upon uk(-) '
-1 if fi depends antitone upon uk(°)

for k = 1(1)n .

«19~
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The matrices A = (aik) and B = (bik) are called the monotonic matrices to f.

Definition (monotonicity condition (M)): Let f € M.
*
Assume the existence of associate ) matrices A' = (aik), B' = (bik) to the
monotonicity matrices A and B such that for all i,k = 1(1)n

raf ¢ D9,c), . BE (et)

ik ik
a;k =a, for a. #0,
%) ¢ e S
i Pin T

| Sl T R
Then f is said to satisfy the condition (M).

Remark: By (28) one sees immediately

. . . =
aik ali a for all ¢ 1(1)n .

Lk

Theorem:

Assume (15). Let f € M be continuous and bounded on I x R x Z. Assume that

f satisfies the condition (M). Let [v,w] be the maximal interval solution to (1), (6).

Then (y_,;] is even the interval hull of the set of all solutions {u} of (1), (&),

i.e. (8) is true.
Proof: By construction of [!,;] the inclusion (18) is true. Define the two function

vectors p = (p ,P,s..-,P ) =p(t), 9= (q,/9,s-..,9 ) = q(t) by
i St n 1" =F n

' =
!k for alk o
Py " .
. 8 -
wk for alk 1 ¥
s G
wk for alk o
. ™
x v for a'! = -1 .’
-k 1k

Certainly p, (0) ¢ {a} and q,(0) € {a}. Moreover the vectors p and q are by
construction and by (28) both solutions of (1). Hence v and w are componentwise

composed of solutions of the problem (1), (20). Hence (8) is true.

*
)'rhese need not be uniquely determined.

-20-~
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